Problem Sheet 2

Problem 1

It was shown on the previous sheet that $\mathbb{Z}[i]$ is a PID. This was used in the first lecture to prove that $X^{2}+Y^{2}=p, p \geq 2$ prime, has an integral solution if and only if $p \equiv 1,2$ (4).
(a) Consider $n \geq 1$ with prime factor decomposition $n=2^{m} \cdot p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$, with all p_{i} odd and $p_{i} \neq p_{j}$ for $i \neq j$. Extend the lecture's arguments to show that

$$
X^{2}+Y^{2}=n \text { solvable } \Leftrightarrow\left(e_{i} \text { odd only if } p_{i} \equiv 1(4) \forall i\right)
$$

(b) Given such n, what is the number of solutions?

Problem 2

Let $K \subseteq L \subseteq M$ be finite field extensions. Prove the following facts on traces, norms and characteristic polynomials.
(a) Trace and norm are transitive in the sense $\operatorname{Tr}_{M / K}=\operatorname{Tr}_{L / K} \circ \operatorname{Tr}_{M / L}$ and $N_{M / K}=$ $N_{L / K} \circ N_{M / L}$.
(b) If $x \in K$, then $\operatorname{Tr}_{L / K}(x)=[L: K] x$ and $N_{L / K}(x)=x^{[L: K]}$.
(c) Let $T^{n}+a_{1} T^{n-1}+\ldots+a_{n} \in K[T]$ be the characteristic polynomial of $x \in L$. Then

$$
\operatorname{Tr}_{L / K}(x)=-a_{1}, \quad N_{L / K}(x)=(-1)^{n} a_{n}
$$

More generally,

$$
a_{i}=(-1)^{i} \operatorname{Tr}\left(\varphi_{x} \wedge \ldots \wedge \varphi_{x} \mid \bigwedge^{i} L\right)
$$

Problem 3

Let K be a field. Every finite-dimensional commutative K-algebra A / K is endowed with the K-bilinear trace pairing

$$
A \times A \longrightarrow K, \quad(x, y) \mapsto \operatorname{Tr}_{A / K}(x y)
$$

(a) Assume $A=L$ is a field extension of K which is not separable. Show that the trace pairing is degenerate.
(b) Prove further that the trace pairing is non-degenerate if and only if A is a product of separable extensions of K.

Problem 4

We would like to show that the ring of integers of $\mathbb{Q}(\sqrt{7}, \sqrt{10})$ is not generated by a single element, meaning it is not equal to $\mathbb{Z}[\alpha]$ for any α.
(a) Let K / \mathbb{Q} be an extension of degree 4 such that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$ is generated by a single element. Show that \mathcal{O}_{K} has at most 3 prime ideals that contain 3 .
(b) Now let $K=\mathbb{Q}(\sqrt{7}, \sqrt{10})$ and set $\mathcal{O}:=\mathbb{Z}[\sqrt{7}, \sqrt{10}]$, which is a subring of \mathcal{O}_{K}. Show that

$$
\mathcal{O} / 3 \mathcal{O} \cong \mathcal{O}_{K} / 3 \mathcal{O}_{K}
$$

Hint: Compute $\operatorname{Disc}(1, \sqrt{7}, \sqrt{10}, \sqrt{7} \sqrt{10})$.
(c) Determine the prime ideals of $\mathcal{O}_{K} / 3 \mathcal{O}_{K}$ through (b) and finish the argument.

